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Abstract: We propose a robust non-contact method to accurately estimate peripheral oxygen
saturation (SpO2) using a smartphone-based imaging photoplethysmography. The method utilizes
the built-in color camera as a remote sensor and the built-in flashlight as illumination to estimate
the SpO2. Following the ratio of ratios between green and red channels, we introduce a multiple
linear regression algorithm to improve the SpO2 estimation. The algorithm considers the ratio
of ratios and the reflectance images recorded at the RGB channels during a calibration process
to obtain a set of weighting coefficients to weigh each contributor to the final determination of
SpO2. We demonstrate the proposed smartphone-based method of estimating the SpO2 on five
healthy volunteers whose arms are conditioned by a manual pressure cuff to manipulate the SpO2
between 90∼100% as detected simultaneously by a medical-grade pulse oximeter. Experimental
results indicate that the overall estimated error between the smartphone and the reference pulse
oximeter is 0.029± 1.141%, leading to a 43% improvement over the conventional ratio of ratios
method (0.008± 2.008%). In addition, the data sampling time in the current method is 2 seconds,
similar to the sampling cycle used in the commercial medical-grade pulse oximeters.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Oxygen saturation (SO2) is a measure of the relative concentration of oxygenated hemoglobin with
respect to the total amount of hemoglobin. The human body tissue demands and auto-regulates
a precise and specific balance of oxygen content within blood circulation throughout various
organs and tissue types. Oxygen saturation, including peripheral SO2 (SpO2), is one of key
physiological indices commonly used to indicate the physical and medical conditions of a person.
For instance, an abnormal level of oxygen saturation is often associated with severe medical
condition, e.g., hypoxia, chronic obstructive pulmonary disease [1] and obstructive sleep apnea
[2]. More importantly, in the current devastating COVID-19 pandemic, SpO2 is a vital parameter
to monitor as its decrease may reflect a compromised oxygen intake through the respiratory
system, thus be alarming for a suspected infection of the coronavirus [3]. Therefore, regular
measurement and monitoring of SpO2 is of great importance for at-home health monitoring
and clinical practices in dealing with various medical conditions and the current pandemic of
COVID-19.

Current clinical gold standard for SpO2 measurement is blood gas analysis with invasive
blood sampling [4,5]. It is not until the early 1980s [6]can SpO2 be continuously measured non-
invasively with a contact-mode light-based pulse oximetry, which has revolutionized the way we
monitor the blood oxygenation in clinical practice as well as in-hospital monitoring. The detecting
principle of pulse oximetry is based on the distinct absorption difference between oxygenated
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(HbO2) and deoxygenated hemoglobin (Hb) in the visible and near infrared wavelength range.
Such basic fact is being continually utilized in the popular development of remote, non-contact
measurements of SpO2 using imaging photoplethysmography (iPPG) [7–10], by leveraging the
advances in area array sensors, for example CCD cameras. The ability to remotely assess SpO2
information could benefit both clinical and research efforts such as in the intensive care unit [11]
and sleep studies [12]. In 2005, Wieringa [13] first introduced the idea of contactless imaging of
arterial SpO2 distribution within the body tissue by employing multiple monochromatic CCD
cameras, each targeted to receive the reflectance images sensitive to specific wavelengths that
are needed to deduce SpO2. Immediately after this study, Humphreys et al. [14] presented a
transmission iPPG system and demonstrated the practicality of iPPG in providing the information
of SpO2. Some system arrangement employed a set of two CCD cameras, each with a narrow
band-pass filter (at 660 nm and 520 nm, respectively) [15]. In addition to the efforts of developing
monochromatic camera-based devices, there are intense research activities over the recent years
focusing on developing devices and algorithms for estimating SpO2 from the RBG-channel
signals provided by a color CCD camera. A Monte Carlo simulation of light transport was
employed in an attempt to convert the RGB signals obtained into a relative concentration of
oxygen saturation [16]. Ufuk Bal [17] used dual tree complex wavelet transform algorithm to
reduce artifacts in SpO2 calculation.

The success of almost all the prior studies was essentially based on the observed relationship
of the oxygen saturation to the ratio of AC/DC ratios between two wavelengths of interest,
which was derived from the Beer-Lambert law [18]. However, when using the Beer-Lambert
law, only the absorbances from the chromophores within skin tissue were considered in the
derivation, for example skin pigmentation, reduced and oxygenated hemoglobin. The effect of
the variation caused by light scattering on the measured reflectance images was unfortunately
neglected, which may cause considerable errors or misinterpretation of the measured SpO2.
According to biomedical optics, the light scattering properties of the heterogeneous skin tissue
and the absorption and scattering strength of the effective blood volume would inevitably affect
the appearance of reflectance images recorded by the CCD camera. The change in reflectance
depends mainly on the effective blood volume, which may be determined by many physiological
factors, such as local temperature, cardiac index and peripheral vasoconstriction [7,19,20].
Therefore, even under a stable illumination condition, the reflectance variation due to the changes
in scattering and absorption can lead to a poor estimation of the relationship of oxygen saturation
to the ratio of AC/DC ratios, giving rise to a considerable deviation of measured SpO2 from
the true value. While this complication can be minimized by the careful control of measuring
environment through strictly maintaining a stable physiological condition, such approach is not
practical in clinical practice and daily check-ups. Alessandro [9,21] proposed an approach of
using the baseline changes in the color of the skin from one of the RGB channels to improve the
estimation of oxygen saturation. However, the study did not describe how to use the color of the
skin to amend the oxygen saturation results.

While camera-array sensor approach has been the main stay for the development of remote
SpO2 monitoring, there is an increasing interest in the development of smartphone-based approach
simply because of its ever-growing accessibility and affordability in the community. In this
regard, effort has been paid to develop pulse oximeter in which a contact light sensor is connected
to smartphone-based mobile devices [22]. Mobile devices offer many advantages, such as
user-friendly customer interfaces. However, the most efforts so far are based on contact-mode
[23,24], requiring hardware attachments and a relative long data-recording period. This attribute
makes smartphone-based contact method less attractive compared to the traditional pulse oximeter.
To increase its competitiveness, an alternative approach is to utilize the color camera built in
the today’s smartphone to record the reflectance images remotely, from which to deduce the
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SpO2. However, as far as we are aware, such an approach has not been reported until now in the
literature.

In this paper, we propose a non-contact method to estimate SpO2 using smartphone-enabled
imaging photoplethysmography. Following the relationship between ratio of ratios of the
reflectance images recorded in RGB channels and oxygen saturation, we introduce a method
of multiple linear regression (MLR) algorithm to minimize the effect of changes in the light
scattering due to the variations of physiological conditions on the final SpO2 estimation. We
demonstrate our smartphone-based remote measurement of SpO2 by imaging volunteers’ hands
conditioned by a manual blood pressure cuff to provide oxygen saturation between 90% and
100%. In parallel, the SpO2 of the conditioned hands is also simultaneously measured by a
medical grade contact mode pulse oximeter at fingers for training the proposed multiple linear
regression algorithm as well as for comparison.

2. Method

2.1. Theory

Oxygen saturation is used to indicate the extent to which hemoglobin is saturated with oxygen,
which is defined as

SO2 =
HbO2

Hb + HbO2
× 100% (1)

where HbO2 is oxygenated hemoglobin, Hb is reduced hemoglobin. The concentrations of
oxygenated hemoglobin (cHbO2 ) and reduced hemoglobin (cHb) can be expressed as a function of
SO2:

cHbO2 = SO2(cHbO2 + cHb) (2)

cHb = (1 − SO2)(cHbO2 + cHb) (3)

During propagation within skin tissue, the light intensity would be progressively reduced due to
the presence of absorbing chromophores, e.g., skin pigmentation, bones, the arterial and venous
blood, following the Beer-Lambert law. The heartbeat would also lead to the pulsatile variation
in the blood volume. Thus, the total absorbance represented at the reflectance captured by the
remote cameras contains DC component and AC component. The DC component is due to the
absorbance caused by venous blood, a constant amount of arterial blood and other non-pulsatile
components such as skin pigmentation. And the AC component is due to the pulsatile nature of
the blood volume within the light interrogated skin tissue volume.

At diastole, the diameter of the arterial vessels is minimal and therefore the absorbance due to
the hemoglobin in arterial blood is minimal, leading to higher reflectance recorded by the camera
(IH). On the other hand, the arteries contain more blood during systolic phase, and therefore,
the optical path length in the arteries increases. The amount of light being absorbed reaches
maximum, giving rise to a minimal reflectance (IL). According to the Beer-Lambert law, IH and
IL could be expressed as,

IH = I0 e−ADC e−At,H (4)

IL = I0 e−ADC e−At,L (5)

where I0 is the intensity of incident light. At = εHb(λ)cHbdHb + εHbO2 (λ)cHbO2dHbO2 is the
absorbance that only containing reduced (Hb) and oxygenated (HbO2) hemoglobin as the
absorbing substances with their corresponding extinction coefficient, concentration and optical
pathlength as being represented by ε, c and d, respectively. All DC components except the
pulsating arterial blood are collectively represented by the effective ADC = εDC(λ)cDCdDC.
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In order to eliminate the influence of DC components, the ratio of absorbances at two
wavelengths (defined as ratio of ratios) could be expressed as

R =
At,λ1

At,λ2

=
ln(IL,λ1/IH,λ1 )

ln(IL,λ2/IH,λ2 )
(6)

Assuming that the optical path length d is the same for the oxygenated hemoglobin (dHbO2)
and reduced hemoglobin (dHb) and the optical path lengths for the two wavelengths are equal,
using Eqs. (2) and (3), Eq. (6) can be reduced to

R =
εHb(λ1) + [εHbO2 (λ1) − εHb(λ1)]SO2

εHb(λ2) + [εHbO2 (λ2) − εHb(λ2)]SO2
(7)

In this form, the ratio of ratios (R) is not a function of the optical path length and can be
derived from the oxygen saturation instead of the concentration of the hemoglobin in the blood.

Equation (7) can be rewritten in a form where SO2 is a function of the measured and calculated
ratio R,

SO2 =
εHb(λ1) − εHb(λ2)R

[εHb(λ1) − εHbO2 (λ1)] + [εHbO2 (λ2) − εHb(λ2)]R
× 100% (8)

Equation (8) is the calibration equation used for almost all the prior literatures to estimate
oxygen saturation based on the ratio of ratios method. However, the derivation procedures
described above are valid based on several assumptions. The most important one is that the
Beer-Lambert law assumes no effect of light scattering on the images recorded by the remote
CCD sensors, which is however not true in practice. It has been demonstrated that the influence
of light scattering on the measurement cannot be removed by simply subtracting the DC signals
[25]. In this case, the total absorbance due to whole blood volume within the interrogated tissue
volume should be expressed as the sum of absorbance as described by the Beer-Lambert law
(At) and a second term representing the changes in light scattering (∆At). Thus, according to the
non-linear variation of pulsatile blood volume in Eq. (6) and using Eq. (8), the SO2 is actually
the function of R and ∆R: ˆ︃SO2 ∼ R + ∆R (9)

where ∆R is the deviation of ratio of ratios caused by the change in light scattering.
Fine and Weinreb indicated the influence of scattering on pulse oximeter readings [20].

They demonstrated that the ratio of ratios is a function of the effective blood volume and the
concentration of hemoglobin, which relate to the subsequent ∆R and R. To account for scattering
effect, Smith [26] introduced an optimal set of three wavelengths in the implementation of
oximetry where two isosbestic wavelengths are used to estimate the contribution by optical
scattering, and a third wavelength is used for SO2 sensitivity. While three-wavelength oximetry
may offer improved accuracy over two-wavelength oximetry by accounting for scattering, the
choice of potential imaging wavebands is rather specific and in fact limited, which would not be
suitable for the development of smartphone-based remote pulse oximetry.

As stated, the effective blood volume within the light interrogated tissue volume is influenced
by many physiological factors such as the local temperature, cardiac index, peripheral vasocon-
striction etc. In the meantime, the variations in effective blood volume due to its pulsatile nature
from the heartbeats cause a change in the light scattering in addition to light absorption, which
subsequently alters the appearance of light reflectance recorded by the CCD camera. This change
in the reflectance images would be represented by a change in the gray value of images recorded
at all the RGB channels. Therefore, ∆R may be mainly represented by the gray value variation
recorded by the RGB sensors, which can be utilized to improve the SpO2 estimation.

Incorporating the reflectance changes at the RGB channels into the SpO2 estimation in addition
to the ratio of ratios, the problem may be taken as a multifactorial process. To deal with this
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problem, we approximate the multifactorial process using multiple linear regression (MLR)
method in which the oxygen saturation is expressed by

y = β0 + β1 · R + β2 · hGreen + β3 · hRed + β4 · hBlue + ε (10)

where y is the oxygen saturation. R, hGreen, hRed and hBlue are the variables determined by the
actual measurements, which represent the ratio of ratios, the mean gray values of the reflectance
images recorded at Green, Red and Blue channels, respectively. βi (i = 0, 1, . . . , 4) are the
weighting coefficients used to weigh the contribution of the measured variables to y. ε is a noise
term in the process. The problem now is reduced to the determination of a set of weighting
coefficients βi (i = 0, 1, . . . , 4).

In this case, the determination can be achieved with a calibration process, given a set of
reference measurements of the oxygen saturation, y. In the calibration process, the target sample
is conditioned to provide a range of known SpO2 and in the meantime, it is sampled by the
smartphone to give the measured signals at the RGB channels. This process gives rise to the
training datasets. For each measurement in the training, the SpO2 can be indicated by

yi = β0 + β1 · Ri + β2 · hGreen,i + β3 · hRed,i + β4 · hBlue,i + εi (11)

where i= 1, 2, . . . , N, meaning the target sample is conditioned to provide N levels of SpO2.
Given the N measurements, the Eq. (11) can be expressed in a matrix form:

y = Xβ + ε (12)

where, y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2
...

yN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 R1 hGreen,1 hRed,1 hBlue,1

1 R2 hGreen,2 hRed,2 hBlue,2
...

...
...

...
...

1 RN hGreen,N hRed,N hBlue,N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, β =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β0

β1

β2

β3

β4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Each element in the matrix X is directly determined from the measurements at the RGB

channels in the smartphone. Since X ∈ CN×5 is not a square and invertible form when N ≠ 5,
singular value decomposition [27] can be used to calculate β. X could thus be expressed as

X = UΣV∗ (13)

where the columns of U and V are left singular vectors and right singular vectors, respectively.
The diagonal elements of Σ are the singular values. Here * denotes the complex conjugate
transpose. Thus, Eq. (12) could be expressed as

y = UΣV∗β + ε (14)

Finally, the optimized β at minimal sum of squared errors can be obtained by

β̂ = VΣ−1U∗y (15)

After calibrating with the training dataset, β is then obtained and stored for later use in the
multiple linear regression of Eq. (10) for each smartphone imaging session to estimate the SpO2
of the target sample.
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2.2. Consideration of smartphone

Conventional contact-sensor based pulse oximeter generally adopts the wavelengths of 660 nm
(Red) and 940 nm (Infrared) [28,29]. The purpose of current study is to use the intact and
unmodified smartphone to provide the oximetry function without employing additional add-on
hardware. However, the use of the standard red and infrared LEDs for illumination on a consumer
smartphone is not possible without modification of the smartphone hardware. In addition, the
RGB sensors in the smartphone present very low QE (Quantum Efficiency) at infrared waveband.
Therefore, the selection of wavelengths for the smartphone-based non-contact oximetry must
consider the characteristics of the built-in RGB sensors and the use of built-in flashlight for
illumination.

When recording the reflectance images emerging at the sample illuminated by the built-in
flashlight, the end-product would be a combined effect among the power spectral distribution
of the flashlight, the spectral sensitivity of each RGB sensor at the smartphone camera and the
absorption spectra of the chromophores of interest presented in the sample. In order to simulate
the response of HbO2 and Hb at specific RGB channels of smartphone camera with built-in
flashlight illumination, we take an iPhone X from Apple Inc as an example. Figure 1(a) shows the
spectral power distribution of its flashlight across the wavelength range from 400nm to 700nm.
Figure 1(b) illustrates the spectral response curves of the red, green and blue channels of its
built-in camera, respectively. Figure 1(c) gives the absorption spectra of the HbO2 and Hb,
respectively, where HbO2 and Hb has similar absorption coefficient at green channel whereas they
exhibit a relatively large difference between blue and red channels. Therefore, the end-product
of the camera that records the reflectance images due to the absorbance of HbO2 or Hb is the
product of the three spectral curves presented in Fig. 1 (a)∼(c), respectively. The result of which
is shown in Fig. 1(d).

Fig. 1. selection of wavelengths for oxygen saturation calculation. (a) Spectral power
distribution of the smartphone flashlight used in this study. (b) Relative spectral sensitivity
of Red, Green and Blue channels of the smartphone camera. (c) Absorption spectra of
oxyhemoglobin and hemoglobin. (d) Combined response curves of flashlight, hemoglobin
and camera RGB sensors when recording the reflectance images.

The wavelength selection of dual-wavelength oximeter should obey the following requirements
[30]. First, the absorption coefficients of HbO2 and Hb should differ greatly at one wavelength.
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Second, there should be approximately equal absorption coefficient in terms of HbO2 and Hb
at the other wavelength. In this case, the difference of integral value between HbO2 and Hb at
Red channel is about 2×104, whereas the corresponding difference at Green channel is about
1×103. Therefore, the red channel would approximately satisfy the first requirement, whereas
the green channel meets the 2nd requirement. In addition, because the flashlight illumination
presents relatively low spectral power intensity at blue channel (425∼500nm), it inevitably
exhibits relatively low signal to noise ratio (SNR), thus should be avoided for the evaluation of
the ratio of ratios. Consequently, the reflectance images recorded at green and red channels are
chosen for calculating the ratio of ratios, which, together with the averaged gray values obtained at
the RGB channels, are used in the MLR algorithm (Section 2.1) to estimate the oxygen saturation
of the target sample.

2.3. Experimental setup

Figure 2 illustrates a schematic diagram of our experimental setup used to provide remote
measurement of SpO2 at the dorsal site of the volunteer’s hand, consisting of a smartphone
(iPhone X, Apple Inc, USA), a reference contact-mode sensor-based pulse oximeter (PC-66H
Handheld Pulse Oximeter, CMI Health, USA), and a manual blood pressure cuff (Aneroid
sphygmomanometer, ParaMed, Canada). The video reflectance images from the skin surface
illuminated by the built-in flashlight in the iPhone were recorded by the built-in rear camera. The
iPhone X was used for demonstration purpose only, but any other types of smartphones can be
used. The distance between the smartphone camera and the dorsal skin surface of the volunteer’s
hand was kept at about 30 cm. The frame rate for video recording was set at 60 frames per
second. We also placed a polarizer sheet at the output of flashlight and an analyzer sheet in front
of the camera. The polarizer and analyzer were orthogonally oriented to minimize the specular
reflection at the skin surface so that the reflection signal from within the tissue sample could be
maximized.

Fig. 2. Schematic of calibrating oxygen saturation with smartphone and commercial
oximeter.

The medical grade contact-mode sensor-based pulse oximeter was used in parallel with the
camera video recording, which provided the reference SpO2 measurements that were used in the
training process of the MLR algorithm to obtain the needed set of weighting coefficients (i.e.,



Research Article Vol. 12, No. 3 / 1 March 2021 / Biomedical Optics Express 1753

Eq.15). The pulse oximeter was also used for the comparison of the measured SpO2 derived
from the conventional ratio of ratio method and the proposed MLR method here.

The standard medical grade manual pressure cuff was used to condition the oxygen saturation
in the volunteer’s hand to provide the SpO2 values ranging from 90% to 100%, to which the
contact-mode pulse oximeter and the remote-mode smartphone measure. It should be noted
that Fig. 2 illustrates the calibration (or training) process of smartphone based on a commercial
oximeter. During measuring step, only smartphone is used.

For experimental demonstration, five healthy volunteers were enrolled in this study, with
subject information shown in Table 1 including the skin color (indicated by Fitzpatrick scale
[31]). All measurements were performed in a standard lab environment. All room windows were
covered so as to minimize the amount of stray light from any source other than the flashlight of
smartphone. Volunteers were instructed to sit comfortably and quietly on a chair. The experiment
began after allowing 10-min accommodation of the lab environment. The manual blood pressure
cuff was placed on the left arm that was finely controlled to realize the SpO2 at the hand ranging
from 90% to 100%. The reference SpO2 data was recorded using the contact-mode pulse oximeter
positioned on the little finger, with a sampling time of 2-4 seconds and a reported accuracy of
2∼3% between 70% and 100% of the SpO2. In parallel, the video reflectance images from skin
surface of the volunteer were recorded by the smartphone.

Table 1. Demographic information of the volunteers including skin color type (Fitzpatrick scale)

Volunteer 1 2 3 4 5

Age 38 26 32 37 25

Gender male male male male female

Fitzpatrick Type II III IV III II

Multiple trials (n= 3 to 5 depending on conditions during data recording) were conducted on
each subject following the same procedure as described above. Each trial consisted of multiple
levels of SpO2 from 90% to 100% at the fingertip as measured by the pulse oximeter and
controlled by the manual blood pressure cuff on the upper arm. At each level of SpO2, the video
images recorded by the iPhone were approximately 10-15 seconds in duration, but truncated to
multiple 2-second non-overlapping segments (i.e., dataset) for later processing.

The experiments described in this study followed protocols reviewed and approved by the
Institutional Review Board of Medical Sciences Subcommittee at the University of Washington,
Seattle. The tenets of the Declaration of Helsinki and Health Insurance Portability and
Accountability Act were followed. Informed consent forms were obtained from all subjects
before participation.

2.4. Analyses of the recorded data

To obtain more accurate estimation of oxygen saturation, valid data should obey the following
two criterions. Firstly, during data recording, the reference oxygen saturation read at the pulse
oximeter should maintain stable for more than 10 seconds. Secondly, the AC components of
iPPG signal should not excess three times the average baseline of AC component. The datasets
after passed this quality check were made available for further processing and evaluation. Listed
in Table 2 are the numbers of valid datasets from all the volunteers participated in this study,
with each dataset corresponding to its unique SpO2 reading by the pulse oximeter in parallel.

In the data processing to extract the time series of reflectance signals, a region of interest (ROI)
was first selected in the video image, which covered most of the hand backside, as shown in
Fig. 3(a). At each time frame, a mean value was obtained through averaging all the pixel values
within the ROI at each color channel to provide the time varying reflectance signals, representing
red, green and blue channels, respectively (as shown in Fig. 3(b), where red and green channels
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Table 2. Number of valid datasets from the participating volunteers

Volunteer 1 2 3 4 5

# in total 128 93 64 53 17

# for training 64 50 30 0 0

# for validating 64 43 34 53 17

are given). The time series of reflectance signals exhibited low-frequency respiration signal,
high-frequency heartbeat signal and noises. The fast Fourier transform (FFT) result of the signal
from Green channel in Fig. 3(b) is shown in Fig. 3(c), where the heartbeat frequency around 1 Hz
is clearly contrasted. A band-pass filter with a passband between the physiologically relevant
frequency band of [0.5-5 Hz] was employed to acquire AC components (Fig. 2(d)). Similarly, the
DC components were computed by passing time-traced signals through a low-pass filter with a
cutoff frequency of 0.3 Hz. At this point, the ratio of ratios between red and green channels can
then be calculated using Eq. (6).

Fig. 3. The extraction process of iPPG signals from a video sequence recorded by the
remote smartphone at 60 fps. (a) A video sequence is illustrated along the time axis where
the ROI is marked with dotted line box for evaluation. (b) Evolution of the spatially-averaged
values within the ROI, i.e., the time series of reflectance signal, during the recorded video at
Red (top) and Green (bottom) channels, respectively. (c) The Fourier spectra of the time
series signal at the green channel, where it clearly shows the heartbeat frequency around 1 Hz.
Band-pass filter (gray-marked between 0.5∼5 Hz) is employed to extract AC components
from the time series reflectance signals. (d) The AC components of Red (top) and Green
(bottom) channels.
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To estimate the mean gray values from each RGB channel in Eq. (10) or Eq. (11), the 2-second
videos were volume-averaged within the ROI to represent the reflectance values at the skin
surface recorded by the red-, green- and blue-array sensors in the built-in smartphone camera
when illuminated by the flashlight.

To obtain the weighting coefficients of Eq. (15), about 50% of the datasets captured from
the first 3 volunteers were randomly selected for the calibration process of the multiple linear
regression algorithm. All the rest datasets were used to test and validate the algorithm to provide
the SpO2 readings through comparing these readings with those provided by the pulse oximeter
using the well-known Bland and Altman method [32]. The total numbers of datasets used for
training and cross-validation are also given in Table 2 for information. Note that the datasets
from the volunteers 4 and 5 were not participated in the training.

3. Results

Before presenting the results of the proposed MLR method to measure the SpO2, we first
demonstrate the relationships between the reference SpO2 and the variables that were evaluated
from the smartphone recordings, including the ratio of ratios and the reflectance values as
exhibited in red, green and blue channels. The dependence of the ratio of ratios on the reference
SpO2 from two representative volunteers are shown in Fig. 4, where the data shown were
from three repeated trials. As expected, the ratio of ratios increases gradually when the oxygen
saturation is decreased. However, volunteer 1 (Fig. 4(a)) has better coefficient of determination
(with r2 = 0.87) whereas volunteer 2 (Fig. 4(b)) presents worse correlation (with r2 = 0.52)
between the ratio of ratios and the oxygen saturation. The relatively poor linearity shown in Fig.
4 (b) may be caused by the variation of effective blood volume during data recording.

Fig. 4. The relationship between the reference SpO2 and the calculated ratio of ratios.
Results were obtained from three repeated trial tests. (a) volunteer 1. (b) volunteer 2.

As discussed, the effective blood volume within the light interrogated tissue volume would
directly impact the reflectance emerging at the tissue surface, represented as the change in the
gray value of the images recorded by the smartphone camera. The relationships between the
mean gray values from green, red and blue channels and the ratio of ratios were analyzed. The
datasets from the first trial test shown in Fig. 4 were processed to show these relationships. The
results of which are shown in Fig. 5.

The results from volunteer 1 presented an excellent coefficient of determination (r2 = 0.98)
between the ratio of ratios and the reference oxygen saturation (Fig. 5(a)). The same volunteer
also exhibited a good correlation between the mean gray values at the green, red and blue channels
and the oxygen saturation, albeit with an opposite trend (Fig. 5(b)). However, a much variation
in the results was seen in the volunteer 2 with a relatively poorer correlation between reference
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Fig. 5. The relationship between the reference SpO2 and the variables extracted from the
smartphone recordings. The results shown are from the first trial test in Fig. 4. (a) and
(c) The change in the ratio of ratios with the variation of the reference oxygen saturation.
The dotted lines represent the linear fitting curves with r2 values as shown. (b) and (d) The
changes in the mean gray values of green, red and blue channels with the variation of the
reference oxygen saturation. Linear fitted lines of three channels are also shown with dotted
lines. (a) and (b) were from volunteer 1. (c) and (d) were from volunteer 2.

oxygen saturation and the ratio of ratios (r2 = 0.57) (Fig. 5(c)). While the linear relationships
between the oxygen saturation and the mean gray values at the RGB channels exist (Fig. 5(d)),
the coefficients of determination were relatively worse than that of volunteer 1. We tabulated the
coefficients of determination of the ratio of ratios, green channel, red channel and blue channel
from 4 trial tests in Table 3, where it indicates that when the ratio of ratios presents a good
coefficient of determination, the relationships between the SpO2 and the mean gray values at the
green, red and blue channels also show a good linearity, and vice versa.

Table 3. Coefficients of determination resulted from linear fitting

test number 1 2 3 4

Ratio of ratios 0.98 0.85 0.57 0.48

Green channel 0.92 0.94 0.65 0.33

Red channel 0.97 0.92 0.63 0.45

Blue channel 0.97 0.89 0.64 0.36

After observing the behaviors of the extracted variables from the smartphone recordings with
the change in the SpO2, we then test and demonstrate the improvement that the proposed MLR
algorithm would provide to estimate the SpO2. While there were more datasets available for
training the MLR algorithm to obtain the needed weighting coefficients as expressed in Eq. (15),
about 50% of valid datasets from the volunteers 1, 2 and 3 were randomly selected for the training
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and calibration. The rest datasets were used to cross-validate the MLR algorithm (See Table 2
for information).

After obtaining weighting coefficients from the training process, we first tested the MLR
algorithm for the volunteer 2 (i.e., intraclass testing because volunteer 2 was participated in
the training). The Bland-Altman plots of the reference SpO2 readings from the pulse oximeter
and the estimated SpO2 values from the ratio of ratios method and the proposed MLR method
are shown in Fig. 6. In this case, the measurement error of SpO2 is 0± 2.38% (µ± 1.96σ) for
the ratio of ratios method, showing a relatively big deviation relative to the reference oximeter
(Fig. 6(a)). However, the accuracy of estimation based on MLR achieves 0± 1.07% (Fig. 6(b)),
indicating an excellent 55% improvement compared to that of the ratio of ratios method.

Fig. 6. The test of the trained MLR algorithm on an intraclass scenario of Volunteer 2
against the reference oximeter readings. (a) Bland-Altman plot of estimated SpO2 based on
linear regression with the ratio of ratios method against the reference oximeter reading. The
blue line and two red dotted lines at either side show µ± 1.96σ= 0± 2.38. (b) Bland-Altman
plot of estimated SpO2 based on the MLR algorithm. The blue line and two red dotted lines
at either side show µ± 1.96σ= 0± 1.07.

Fig. 7. The test of the trained MLR algorithm on the datasets available from all the
volunteers against the reference oximeter readings. (a) Bland-Altman plot of estimated SpO2
based on linear regression with the ratio of ratios method against the reference oximeter
reading. The blue line and two red dotted lines at either side show µ± 1.96σ= 0.008± 2.008.
(b) Bland-Altman plot of estimated SpO2 based on the MLR algorithm. The blue line and
two red dotted lines at either side show µ± 1.96σ= 0.029± 1.141.
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Next, we tested the MLR algorithm on the SpO2 estimation on all the available validating
datasets (Table 2), including those from the volunteers that were not included in the training.
In this case, the cross-validation of leave-one-out technique [33,34] was used. The resulted
SpO2 compared with those of reference oximeter are summarized in Fig. 7, for the conventional
ratio of ratios method (Fig.7a) and the proposed MLR algorithm (Fig. 7(b)). The overall
estimated error between the conventional ratio of ratios method and the reference oximeter was
µ± 1.96σ= 0.008± 2.008%, whereas that for the MLR algorithm wasµ± 1.96σ= 0.029± 1.141%,
indicating a 43% improvement for the proposed method. A degradation in the performance was
observed compared to the intraclass testing, probably because of the mixed skin colors across the
volunteers.

4. Discussion

The results presented above show that compared to the conventional ratio of ratios method,
the multiple linear regression (MLR) algorithm results in much better estimation of the SpO2,
delivering a very good agreement with the readings from a commercial medical grade pulse
oximeter sensor. This improvement is attributed to the additional consideration of the changes in
light scattering and absorption that are induced by the effective blood volume within the light
interrogated skin tissue, giving rise to the changes in the reflectance images recorded at the RGB
channels. We note that when dealing with the ratio of ratios method, some literature suggested to
carefully select the regions of interest (ROI) by calculating signal-to-noise ratios for each ROI
[20] so that the best ROI was selected for improved estimation of the oxygenation saturation. Even
with this complicated procedure, the ratio of ratios method still exhibits relatively poor coefficient
of determination with oxygen saturation, affecting the accuracy of the final estimated SpO2. In
this study, we found that the mean gray values from three RGB channels of smartphone camera
are correlated with the observed oxygen saturations. Taking these relationships as additional
variables into the consideration for estimating SpO2, the accuracy is demonstrated with great
improvement using the proposed MLR algorithm. When compared to that of the ratio of ratios
method, the measurement error for intraclass testing is reduced from 0± 2.38(µ± 1.96σ) to
0± 1.07, indicating a ∼55% improvement. The overall improvement by including the volunteers
not participated in the training is observed at 43%. The second advantage of the MLR method
is a short sampling period. Non-contact detection of oxygen saturation has always required
longer sampling time to acquire the datasets with good SNR. Most prior remote algorithms
require 10∼12 seconds sampling time [15,17,21]. However, the sampling time-period of the
proposed MLR algorithm in this paper was reduced to 2 seconds, which is similar to the fastest
sampling time of commercial pulse oximeters. This merit is important because it could have
great potential to improve the practicality of the non-contact smartphone-based approach to
estimate the oxygen saturation in human subjects. Thirdly, because of the attributes of remote
and non-contact measurement, the proposed MLR method delivers additional advantages of rapid
survey and avoiding cross infection, which is particularly important for the current epidemic
outbreak of COVID-19.

The reference standard used in this study was a commercial and medical grade pulse oximeter
rather than blood-gas analysis. This could certainly introduce possible errors when assessing the
accuracy of this new algorithm because the algorithm relies on the absolute accuracy of the pulse
oximeter. If necessary, the MLR algorithm can be calibrated with the gold standard blood-gas
analysis for improved accuracy. On the other hand, the infrared light used in pulse oximeter has
deeper penetration depth relative to the visible light employed in remote smartphone method.
Therefore, the pulse oximeter provides the arterial oxygen saturation (SaO2) measurement,
whereas the remote smartphone method is more likely to measure the peripheral tissue oxygen
saturation (StO2) [35]. Although Benaron et al. [36] indicated that SaO2 and StO2 are correlated
over limited ranges, no study has been conducted on humans so far. Large fluctuation on the ratio
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of ratios may be explained by the fact that, venous and capillary oxygen saturation would more
likely be influenced by ambient variation relative to arterial oxygen saturation.

Considering the ever-growing utility of the smartphones in the community, mobile health
(mHealth) is playing an increasingly important role in nowadays medical market, even for
personal amusements. Heart/respiration rate monitoring [37], blood pressure surveillance
[38], morphological features analysis and hemodynamics monitoring [39,40] are all successful
applications of mHealth to date. More opportunities of medical applications by leveraging the
advances in the development of smartphones would help improve the medical environment in
undeveloped areas, making it possible for remote monitoring of health conditions and realizing
household health monitoring economically. Integration of accurate non-contact oxygen saturation
measurement in the smartphone would thus accelerate the developments of mHealth.

5. Conclusion

We have demonstrated the feasibility of using intact and unmodified smartphone to realize the
remote measurement of peripheral oxygenation saturation (SpO2). A multiple linear regression
(MLR) algorithm has been proposed to accommodate the changes in light scattering and
absorption due to the effective blood volume within the light interrogated skin tissue volume,
for which the changes in the reflectance images recorded at RGB channels in the smartphone
were used as a surrogate in the formulation of the algorithm. We have shown that the proposed
MLR algorithm delivers a significant improvement (55% improvement for intraclass testing, and
43% for overall testing) in the estimation of SpO2 when compared with that of the conventional
ratio of ratios method. Since the results were demonstrated with the built-in color camera and
the built-in flashlight within a smartphone with a sampling time duration similar to the standard
pulse oximeter, we expect this development to represent a significant advance to the current effort
for developing accessible and cost-effective mHealth, particularly benefiting the populations
living in the underserved and rural areas and in the developing countries.
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